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Abstract

With the increase in demand flexibility and the rapid introduction of uncontrollable re-
newable power sources, effective schemes for managing the power usage of end-users are
required. In this line, we propose a energy management framework for coordinating the
power usage of communities of networked agents. More specifically, communities (groups
of loads) coordinate to minimize their aggregated power imbalance, while taking into ac-
count each community’s objectives and constraints, as well as the preferred power usage
pattern of each end-user. For having a robust coordination that can work under unex-
pected events, we propose to assign the agents to communities using a measure of the
flexibility of sets of agents. The coordination framework builds on the alternating direc-
tions method of multipliers (ADMM), algorithm that is used to implement a distributed
coordination using a hierarchical architecture. While the distributed coordination allows
to manage the power usage of each end-user, the hierarchical architecture enables the
integration, in a single framework, of energy management problems that would be other-
wise handled independently. We illustrate and analyze the coordination framework using
three simulated scenarios.

Keywords: Coordinated energy management, imbalance minimization, power
balancing, demand response, optimization, distributed coordination.

1. Introduction

While the balancing of generation and consumption is crucial for the operation of
electric power systems, shaping the demand can help reducing operational, capacity and
investment costs [1]. The introduction of information technologies in the management of
power systems [2] is making the demand more flexible (thanks to the ability of real-time
sensing, controlling, and scheduling the power usage, and the introduction of mobile
loads and local storage), which together with the rapid introduction of uncontrollable
renewable generation sources, is requiring new balancing schemes to effectively manage
the increasing flexibility of the demand.
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The traditional solution to balance the supply and demand has been to control the
generation (by dispatching of generation units), with an (aggregated) demand that is
not controlled. Also, and seeking to reduce costs (e.g. associated to high consumption
peaks), the control of the power consumption through demand response (DR) programs
has been introduced [3] [4].

DR programs can be roughly classified in two categories: i) price-based, such as time-
of-use (TOU), critical-peak-pricing (CPP), and real-time-pricing (RTP), and ii) event (or
incentive)-based, such as direct load control (DLC), curtailment, and demand reduction
bid programs. While event-based programs are designed to be seldom used and therefore
is not clear how they can deal with uncontrollable power sources, price-based programs
(e.g. RTP) may cause peak rebounds because all agents receive the same price signal
and may decide to use power at a similar time (see [5] for a deeper discussion on these
issues).

Seeking to address these issues, a new category of methods for controlling the power
usage of a group of users has been recently proposed (see e.g. [6] [7] [8] [9] [10] [11]).
We refer to this new category as coordinated energy management1. Take for example
[11], where a coordinated home energy management system (CoHEMS) was introduced
to balance the supply and demand of homes by a coordinated scheduling of deferrable
appliances. The key difference between demand response and coordinated energy man-
agement is that in the latter the agents coordinate their power usage seeking the benefit
for the whole community, while in existing methods each agent acts independently, usu-
ally after receiving a top-down signal sent by an operator. Additional benefits are that:
i) it can more effectively manage the aggregated power usage and avoid generating peak
rebounds (thanks to the coordination), and ii) it can consider each user’s quality of life
and privacy (thanks to the inherent distributed architecture).

In power systems and energy markets, there are constraints and objectives associated
to different entities. For example, the distribution network has a radial structure with
constraints associated to subparts of its tree structure (e.g. constraints associated to
transmission substations). Similarly, in energy markets (e.g. wholesale, balancing and
retail), various mechanisms are used to minimize energy cost and to ensure the opera-
tional stability at the different levels of the power grid, and these markets have objectives
associated to subparts of the network. Moreover, these markets usually work indepen-
dently, but their integration in a single framework could be beneficial (see e.g. [12] [13]
[14]). Therefore, a coordination architecture able to consider objectives and constraints
in an integrated way is helpful in many scenarios.

In this context, we propose a framework for coordinating the power usage of networked
agents (appliances, factories, etc.), with the main goal being to minimize the imbalance
among communities, while including objectives and constraints for each community and
taking into account each user’s quality of life / activities. Although the framework does
not need to respond to external requests, it can provide demand response as a service, and
it can be used to manage both, power usage and power generation. Also of importance
is the robustness of the coordination architecture, therefore we propose an optimization

1This kind of approach has been refereed to as coordinated DR [5]. However, we believe that coordi-
nated energy management is a more suitable name, as it applies to more general cases: the coordination
does not need to respond to external requests, and each user can be a prosumer (a producer and a
consumer).
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framework for building communities such that each community has flexibility to handle
unexpected events.

The present article builds on our previous work [15], giving a complete description of
it, and including new experimental results. The main contribution is two fold: i) first,
a framework for coordinated energy management for inter-community imbalance min-
imization is introduced, and ii) second, a framework for building these communities,
taking into account each agent’s flexibility, is proposed. In order to illustrate the co-
ordination framework, we use coordinated electric vehicle (EV) charging, but the coor-
dination framework can be used in other applications. Three scenarios are considered:
i) Imbalance minimization with community constraints, ii) Imbalance minimization for
demand response as a service, and iii) Imbalance minimization robustness under unex-
pected events, scenarios where the framework’s robustness against different conditions is
also analyzed.

The article is structured as follows. We first formulate the imbalance minimization
problem (Section 2.1), we continue by presenting the coordination framework (Section
2.2) and by describing the framework for assigning agents to communities (Section 2.3).
Finally we present the example scenarios (Section 3) and conclude (Section 4).

2. Coordination Framework

Our overall goal is to minimize the power usage imbalance among communities, while
considering each community’s goals (e.g. consumption targets) and constraints (e.g. local
consumption and generation), and also taking into account each user’s preferred power
usage pattern (which is related to the user’s quality of life / activity).

Communities. There are many ways to define a community. The agents that are part
of a community can be predefined depending on the users (agents) goals, values (e.g. to
consume renewable power sources) or by considering some physical closeness (e.g. the
users’ in neighborhood). Some users may have objectives or constraints for its agents
(either physical or contractual), and this will require that those agents are in the same
community during the coordination. For example, one could consider the radial power
distribution network, where some nodes (e.g. a sub-transmission substation, or load bus)
of this tree structure could define the communities.

A relevant case corresponds to each community being managed by a power retailer.
Then, the inter-community imbalance minimization corresponds to an imbalance mini-
mization among power retailers, and this can be seen as an imbalance market, where the
power retailers negotiate the power usage and prices.

2.1. Problem formulation

We consider N agents, i ∈ N = {1, . . . , N}, each one having a power usage described
by a vector xi ∈ RT , with T the number of time-slots for a given time period (e.g.
T = 144 can represent a 24 hour period with 10 min time-slots). The components of
the power profile xi are positive at times power is consumed, and negative when power
is generated. Agent i can correspond to a single power using device (e.g. an appliance),
or to a larger entity (e.g a household, a factory, etc). Although we focus on power using
agents, considering generation and storage is straight-forward.

3



We assume each agent can sense (measure), plan and schedule/manage its power
usage. Sensing allows the agent to build a model of the power usage uncertainty and
flexibility, while planning allows to define its future consumption, and scheduling imple-
ments the control. Note that in the current paper we do not address the problem of
real-time control, which must consider the stochastic nature of appliance usage and of
renewable generation (see [16] for an example of an agent that could implement this real
time control).

The agents are organized in J non-overlapping communities2, with the agents in
community j represented by the index set Nj . We note Nj = |Nj | the cardinality of
community j. {Nj}j∈J corresponds to a partition of N (N = ∪Jj=1Nj and Nj ∩Nk = ∅
for j 6= k), thus N =

∑J
j=1Nj is the total number of agents.

We formulate the inter-community imbalance problem as the following optimization
problem:

minimize
(xi)i∈N

∑

i∈N
f ti (xi) +

∑

j∈J
htj(

∑

i∈Nj

xi) + gt(
∑

i∈N
xi), (P1)

where there are objectives functions for three levels: agent, community, and global (with
the function gt measuring the inter-community imbalance); and where the t superscript
is used to indicate that these functions may change over time. This optimization is run
at each time t, but in the following we omit the t superscript for clarity.

We call fi : RT → R the function that measures the local cost (disutility) of agent i to
achieve the profile xi, while hj : RT → R is a function that measures the cost/constraints
associated to the aggregated profile

∑
i∈Nj xi of the community j, while the function g :

RT → R measures the imbalance cost associated to the global aggregated profile
∑
i∈N xi.

Thus, the goal is to minimize this imbalance cost taking into account community and
agent objectives.

Global objective. The function g(v) measures the imbalance cost associated to the ag-
gregated power usage v =

∑
j∈J wj , with wj =

∑
i∈Nj xi, the aggregate power usage

of community j. Many options are possible, but we use the squared Euclidean norm of
the deviation from a reference profile: gr(v) ∝ ||v − r||2, where r ∈ RT can represent an
aggregated planned usage profile (e.g. determined in a day-ahead market) or an expected
generation power profile (e.g. a PV forecast). When r = 0, the goal is to flatten the
power usage, and in general r =

∑
j∈J rj ∈ RT , with rj ∈ RT the target power usage of

the community j.

Community objective. The objective hj(
∑
i∈Nj xi) for each community j ∈ J can encode

a shared cost, a set of constraints (e.g. hj(x) = 0 for x ∈ Xj , and +∞ otherwise), or
could be zero for all x. The constraints can encode physical restrictions (power usage
limits), energy cost-related bounds (e.g. budgets), consumption targets, among others.
We consider two cases:

• Usage bounds: hj(x) = −
∑T
τ=0 log 1[x(τ)≤vj(τ)]

, with 1[◦] the indicator function,

x(τ) the τ th component of x ∈ RT , and vj(τ) ∈ R a power usage limit at time τ .

• Minimize deviation from plan: hj(x) ∝ ||x− rj ||2, with rj a power usage target.

2Notation: we use the index j to refer to communities and the index i to agents.
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Agent objective. For modeling and controlling each agent’s power usage, we use the
family of objective functions proposed in [9]. While the coordination is not restricted
to this particular family, we use it as it can take into account user dissatisfaction and
uncertainty measures in the appliances’ control, and it comprises a probabilistic model
that can be learned from real daily sensing data through statistical or machine learning
techniques. The cost of agent i is defined as:

fi(xi) = min
ui∈Ui

[− logP (xi, ui)] , (1)

which implements a probabilistic generative model P (xi, ui) = P (ui)P (xi|ui), with the
probabilities P (ui) and P (xi|ui) being used to measure how natural the control ui ∈ Ui
is, and the certainty of achieving the profile xi given the control signal ui, respectively.

We further define the corresponding disutility functions, f
x|u
i (xi, ui) = − logP (xi|ui),

and fui (ui) = − logP (ui), thus fi(xi) = minui

[
fui (ui) + f

x|u
i (xi, ui)

]
. Thus, in case

P (xi, ui) becomes zero, f
i
(x

i
) becomes +∞, indicating that the associated profile cannot

be achieved. A simple example consists of P (xi|ui) equal to the delta function δ(xi −
χi(ui)), and χi : Ui → RT being a mapping from control signals ui to profiles xi. More
complex mappings can consider possible uncertainties in the mapping from control signals
to power signals (see [9] for more details).

The control ui is closely related to the user’s QoL, while the power profile xi is not
necessarily so. Thus, the function P (ui) can be related to this QoL while also considering
soft/hard constraints for the control ui. A key aspect in power balancing is to schedule
the power usage. Thus, for modeling the involved probabilities a hidden semi-Markov
model (HSMM) [17] [18] is used, method that explicitly models time-varying signals as a
sequence of time intervals (or modes) and is popular in the speech recognition community.
Basically, a sequence of discrete states si,t ∈ Qi = {qi,m}m=1,...,Mi

, is used to describe
the profile xi, where each state represents the mode of appliance i at time t, and the
control variables ui are these modes at each time t = 1, . . . , T .

During the coordination, the agents solve a optimization problem using functions as
defined in Eq. (1) when using a HSMM model. The optimization problem is presented in
the next paragraphs (specifically Eq. (2) which can be solved efficiently using dynamic
programming [9]).

2.2. Coordination

To implement the coordination among agents, we introduce a coordinator for each
community and a global coordinator. The basic coordination scheme is presented in Fig.
1, where the global coordinator exchanges messages with the community coordinators,
while each community coordinator exchanges messages with the agents in its community.
Put in other way, the agents coordinate with the help and via the coordinators.

Proximal operator. For an agent to take part of the coordination, the agent (with cost
function f) has to be able to solve the following optimization problem:

proxf,ρ(v) = arg min
x

f(x) +
ρ

2
||x− v||2, (2)
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Figure 1: Distributed hierarchical architecture. The agents, with the help of community and global
coordinators, cooperate to minimize

∑
i∈N fi(xi) +

∑
j hj(

∑
i∈Nj xi) + g(

∑
i∈N xi), namely they seek

to minimize the inter-community imbalance while taking into account local, and community objectives
(see text in Section 2 for details).

which means that it implements a proximal operator3 [19] [20], with the value of v depend-
ing on a message sent by a coordinator. A (global/community) coordinator implements
a proximal operator, plus some extra steps. The details of this coordination, and the
relation between the parameters, the exchanged messages, and each entity’s objective
function, is specified in the following.

The Alternating Direction Method of Multipliers (ADMM). ADMM [21] is used to im-
plement the coordination. In its basic form, ADMM solves problems of the form:

minimize
x

f(x) + g(x). (P2)

By introducing a duplicate variable z = x ∈ RT and a Lagrange multiplier u (as-
sociated to the constraint z = x), ADMM consist on applying the iterative algorithm:

xk+1 := proxf,ρ(z
k − uk) (3a)

zk+1 := proxg,ρ(x
k+1 − uk) (3b)

uk+1 := uk + xk+1 − zk+1, (3c)

with ρ a penalty parameter, and k the iteration index.
The convergence of ADMM has been widely studied [21]. It is known to converge

when the objective functions (f and g) are closed, proper and convex, and the augmented
Lagrangian has a saddle point. Under these assumptions, the ADMM iterates satisfy

3For clarity we have written ρ ∈ R as a parameter of the operator. This is not standard notation;
usually proxf/ρ(v) is used instead.
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residual, objective and dual variable convergence. ADMM is known to converge for
biconvex problems and under non-convex constraints [21], and its convergence has been
studied for non-convex [22] and time varying functions [23].

We note that the x-step in Eq. (3a) and the z-step in Eq. (3b) are solved separately,
with the x-step requiring only access to f and the y-step having only access to g, thus
allowing a distributed implementation. We will use the ADMM algorithm to implement
a distributed coordination at two levels, inter- and intra-community coordination.

2.2.1. Inter-community coordination

First, we re-write the problem (P1) by grouping the agents according to the given
communities Nj :

min
(xi)i∈N

∑

j∈J


∑

i∈Nj

fi(xi) + hj(
∑

i∈Nj

xi)


+ g(

∑

j∈N

∑

i∈Nj

xi). (P3)

This problem corresponds to a sharing problem [21] among communities, with g(
∑
j∈J

∑
i∈Nj xi)

the cost shared among J communities. To solve it we use ADMM, and similarly to what
we did with problem (P2) we introduce duplicate variables. In this case the duplicate
variables of aggregated profile of each community wj =

∑
i∈Nj xi are introduced, leading

to the optimization problem:

min
(xi)i∈N ,(wj)j∈J

∑

j∈J


∑

i∈Nj

fi(xi) + hj(
∑

i∈Nj

xi)


+ g(

∑

j∈J
wj)

s.t. wj −
∑

i∈Nj

xi = 0 ∀j ∈ J .

(P4)

By applying ADMM to problem (P4) we obtain the following iterative procedure4, with
iteration index q:

(x̃q+1
i )i∈Nj := arg min

(xi)i∈Nj

∑

i∈Nj

fi(xi) + gqj (
∑

i∈Nj

xi),∀j (4a)

w̄q+1 :=(1/J) proxg,ρg/J
(
J(x̄q+1

g + νq)
)

(4b)

νq+1 := νq + x̄q+1
g − w̄q+1, (4c)

with w̄qg = 1
J

∑
j∈J w

q
j , x̄

q
g = 1

J

∑
j∈J x̂

q
j , and ν ∈ RT the Lagrange multiplier associated

to each constraint wj =
∑
i∈Nj xi (note that the Lagrange multiplier is equal for all j

(ν = νj ∀j ∈ J ) [21]). Here, x̂qj =
∑
i∈Nj x̃

q
i is the group proposed profile, and x̃qi is the

profile of agent i at iteration q. The parameter ρg is a global penalty term.
Note that in Eq. (4a) we have introduced the function:

gqj (v) = hj(v) +
ρg
2
||v − x̂qj + bqg||2, (5)

4The derivations are omitted for space reasons; see [9] [15] [21] for similar derivations. Note that we
have used the property proxf,ρ (Jx) = (1/J) proxf,ρ/J2 (x).
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which depends on x̂qg, the previous proposed profile by the community (known by the
coordinator j), and on bqg = x̄qg − w̄qg + νqg , a signal determined by the global coordinator.

2.2.2. Intra-community coordination

At each iteration q of the algorithm in Eq. (4), each community solves its correspond-
ing problem in Eq. (4a):

minimize
(xi)i∈Nj

∑

i∈Nj

fi(xi) + gqj


∑

i∈Nj

xi


 (P5)

with gqj (v) managed by the community coordinator. The function gqj depends on bqg (Eq.
(5)), a signal defined by the global coordinator at the iteration q (at the global level).

It is not difficult to see that problem (P5) is a simpler case of problem (P3), also
corresponding to a sharing problem. Then, similarly to problem (P3) we introduce
duplicate variables, in this case for each agent power usage zi = xi ∀i ∈ Nj , and solve it
using ADMM, obtaining the iterative algorithm (with iteration index k):

xk+1
i := proxfi,ρj (x

k
i − bkj ) ∀i ∈ Nj , (6a)

z̄k+1
j :=(1/Nj) proxgqj ,ρj/Nj

(
Nj(x̄

k+1
j + νkj )

)
, (6b)

νk+1
j := νkj + x̄k+1

j − z̄k+1
j , (6c)

with bkj = x̄kj−z̄kj +νkj a broadcast signal determined by the community coordinator. Here

νkj ∈ RT corresponds to the scaled Lagrange multipliers [21], ρj is a penalty parameter,

and we note ā to represent the average of a set of variables {ai}i∈N , (i.e. ā = 1
N

∑
i∈N ai).

Case of no community objective functions. When community j has no objective function
(i.e. hj(x) = 0, ∀x), Eq. (6b) can be solved analytically (with αρ,j =

ρj
ρgNj

and r̂qj =
1
Nj

(bqg − x̂
q
j)):

z̄k+1
j =

1

1 + αρj

[
αρj

(
x̄k+1
j + νkj

)
− r̂qj

]
, (7)

meaning that z̄kj and νkj are linear in all the required variables (the same holds for the
residuals used in the algorithm’s stopping criterion; see below). Thus, in this case the
state of the coordination can be calculated by any entity having access to r̂qj and to the

sequence (x̂kj )k=0,...,Kj (with Kj the number of iterations).

2.2.3. Implementation

Distributed coordination. The coordination is implemented using the architecture in Fig.
1, which corresponds to a two-level distributed coordination: an inter-community coordi-
nation (in blue) and an intra-community coordination (in red and green). Take the case
of the coordination of community j (the inter-community coordination is analogous): the
first step (x-step in Eq. (6a)) is calculated concurrently by each agent of the community
j after receiving the broadcast signal bkj from the coordinator, while the second and third
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steps (z- and ν-steps in Eq. (6b) and Eq. (6c)) are calculated by the community coor-
dinator, which first aggregates the profiles (xk+1

i )i∈Nj , calculates x̄k+1
j , z̄k+1

j and νk+1,

and then broadcasts bk+1
j to all agents.

There are two advantages of the two-level distributed formulation that it is worth
highlighting: i) the problems solved by two communities are de-coupled (agents at dif-
ferent communities do not work synchronously), and ii) the communication rate at the
upper (inter-community) level can be lower than the one within each community.

Starting conditions. There are no requirements for the initial values of the optimization
variables. We use the following values for the community level (the inter-community
level is analogous): the coordination starts with a broadcast signal b0j = 0 (zero vector

of dimension T ), and b0g = 0, the initial value of the profiles are also always set to zero
x0i = 0, thus agent i sends the solution of proxfi,ρj (0) at the first iteration. Given that
the intra-community coordination is nested in the inter-community coordination, the
intra-community coordination always starts with the observed values (for xki and z̄k) in
the previous coordination.

Stopping criterion. For problem (P1) solved in Eq. (3) (ADMM), the stopping criterion
proposed in [21] can be used. It requires the evaluation of skp = xk − zk and skd =

ρ(zk+1 − zk), the primal and dual residuals respectively. The termination criterion are:
||skp|| ≤ εpri and ||skd|| ≤ εdual, with εpri > 0 and εdual > 0 feasibility tolerances.

Communication link failures. When an agent or community is not able to communicate
with its upper level, the following behavior is used. Assume community j and the global
coordinator cannot communicate at iteration q. In such case the global coordinator uses

the last received message from community j, lets say x̃
(p)
j (with p ≤ q), as the profile

that community j plans to follow, while community j modifies its objective function such
that temporarily its goal is to have a profile as close as possible to the last communicated
one. Once the communication is restored, the community goes back to use its original
objective function, allowing the coordination to stay close to its expected behavior, and
to resume the coordination once the communication is restored. This fall back protocol
is defined in terms of the last communicated profiles (instead of broadcast signals), so
that the global coordinator can continue coordinating with the remaining communities.

Data package losses and early stopping as inexact solutions of the proximal operator.
Distributed algorithms can suffer from problems occurring during the data transmission
(e.g. package loses, delays, errors, etc.) that could affect the convergence of the algorithm.
Also, in some cases it may be required to limit the number of iterations, e.g. for reducing
the communication requirements within a community. One of the advantages of using
ADMM is that it is known to converge even if the solutions of the proximal operator
are inexact (under some suboptimality measures [21] [24]). This means that ADMM can
converge even if the intra-community coordination is solved approximately, e.g. when:

• Some data packages are lost during the communication (a lost profile can be ap-
proximated using previously received packages), which increases the robustness of
the algorithm and can simplify the communication protocol.
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• The number of iterations for a community is limited (the x-step is solved approxi-
mately for a community), which allows reducing the communication requirements
within a community.

Intra-day coordination. In order to deal with the stochastic nature of part of the power
consumption (associated to the users’ unpredictable living activities) or with the un-
certainty in the generation (associated to external conditions, such as weather in the
case of photovoltaics), we use the receding horizon optimization presented in [25]. This
intra-day coordination consists of running the proposed coordination several times during
the day, taking into account possible changes in the agents’ objective function and the
observed power usage. This is done considering changes in the objective function which
reflect changes in user preference, forecast of renewable generation, or energy cost (e.g.
associated to a peak price signal). This means that the proposed framework does not
handle power usage in real-time: it assumes that the real-time control is implemented by
each agent (e.g. using [16]), and that it can incorporate new information as it is available
through the day. In other words the coordination is used for “planning”, and the agent
is expected to follow the plan, but the whole community will collaborate when an agent
cannot follow its planned power usage or new information is available.

2.2.4. Exchange market interpretation

As we saw, the (scaled) Lagrange multipliers are the same for all agents within a
community (νj = νi ∀i ∈ Nj , i.e., they are in consensus [21]). Also, it is not difficult to
see that once the algorithm converges, the broadcast signal bqj converges to the Lagrange
multiplier νj . The Lagrange multipliers can be interpreted as clearing prices of an ex-
change market [21], and the coordination determines both, the optimal power usage and
the clearing prices. In that sense, the coordination works as a Tâtonnement process [26]
[13], with the role of each coordinator being similar to the one of secretary of market.

In case there is no community objective function for each of the communities, and if
ρj = ρg∀j, the Lagrange multipliers at the inter- and intra-community levels converge to
the same values. Therefore all agents participate in single a hierarchical exchange market
that converge to the same clearing prices at the different levels of the coordination.

2.3. Robust communities

In cases when the agents can be assigned to any community (e.g. when the communi-
ties have no objective function), we can do the assignment seeking that each community is
able to work independently and to handle unplanned situations during the coordination;
thus obtaining a robust system. For this we propose a framework for assigning agents to
communities and a measure of the agents’ flexibility to be used in the assignment.

Agent assignment. We formulate the assignment of the agents in N = {1, . . . , N} into
J communities as a welfare maximization problem:

arg max
(N1,...,NJ )∈P(N )

J∑

j=1

Wj(Nj), (P6)

where we seek to maximize the welfare of J communities over all possible elements of the
partition P(N ). The set function Wj : 2N → R+, evaluated in a set S ⊆ N , gives the
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welfare for community j when being assigned the agents in S. We will use the function
Wj to measure the flexibility of community j, but other (or additional) criteria can also
be used.

The assignment problem in (P6) is NP-hard [27], so when the number of agents
is large, finding the optimal is not feasible. However, in case the functions Wj are
monotone5 and submodular6, approximation algorithms exist [27] [28]. These algorithms
are γ-approximations, meaning that in expectation their solution is at least γOPT, with
OPT the optimal assignment. We consider the off-line setting [28], case for which an
optimal approximation is obtained (with the best achievable bound for an approximation
algorithm), with γ = (1− 1/e) ≈ 0.632.

The optimal approximation [28] is obtained by allocating each agent at random using a
particular probability distribution, as shown in Algorithm 1 (WSAgentAssignment).
This algorithm is ran a few times and the best selection kept. In general the prob-
ability distribution (line 2 in Algorithm 1) needs to be estimated once using Algo-
rithm 2 (EstimateDistribution) (for a given set of functions {Wj}j and agents),
while in the particular case when the welfare function is the same for all communi-
ties, W (S) = Wj(S) ∀j, the optimal approximation is obtained by allocating the agents
uniformly at random.

In addition to having a bound that ensures a solution that is not too far from the
optimal one, this algorithm has two more advantages: it does not require knowing the
analytic form of Wj (just requires monotonicity and submodularity), and it can be used
when some agents have been already assigned to communities (to build the communities
incrementally).

Algorithm 1 WSAgentAssignment
(
N , J, (Wj)

J
j=1

)

Input: N : set of input agents; J : number of communities
Input: (Wj)

J
j=1: input community welfare functions

1: Nj ← ∅ ∀ ∈ 1, . . . , J // Initialize sets

2: ω ← EstimateDistribution
(
N , J, (Wj)

J
j=1

)

3: for each i ∈ N do
4: j ← sample ωi
5: Nj ← Nj ∪ i // Assign agent i to set Nj
6: end for

Output: (Nj)Jj=1

Flexibility measure. Each community should be flexible such that it can adjust under
unplanned events. From the point of view of the coordination, this can be seen as the
capability of a community to have various power profiles, while considering that not all
achievable profiles are equally preferred. To model this flexibility, we take the profiles
that can be achieved by a set of agents and model them using a probability distribution

5A function f : 2N → R is monotone if f(S) ≤ f(P ) ∀S ⊆ P .
6A function f is submodular, if for all S1, S2 and s such that S1 ⊆ S2 and all s 6∈ S2, we have that

f(S1 ∪ s)− f(S1) ≥ f(S2 ∪ s)− f(S2).
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Algorithm 2 EstimateDistribution
(
N , J, (Wj)

J
j=1

)

Input: N : input agents, and J : number of communities
Input: (Wj)

J
j=1: input community welfare functions

1: δ ← 1
(JN)2 , ∆← 0, yji(∆)← 0∀i ∈ N , j ∈ {1, . . . , J}

2: while ∆ < 1 do
3: Let Rj(∆) be a random set containing each agent i independently with probability

yji(∆)
4: for all i, j do
5: ωji(∆)← E [Wj(Rj(∆) ∪ i)−Wj(Rj(∆))]

//expected marginal gain of community j from agent i
6: end for
7: for each i do
8: ji(∆)← arg maxj ωji(∆) //break ties arbitrarily
9: for each j do

10: yji(∆ + δ)← yji(∆)
11: if j == ji(∆) then
12: yji(∆ + δ)← yji(∆) + δ // preferred group
13: end if
14: end for
15: end for
16: ∆← ∆ + δ
17: end while
Output: ω
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of their aggregated profile. Then, we seek that this distribution is as “spread” as possible,
and measure this using the entropy of the community’s aggregated profile7.

Let us call Xi ∈ RT the multivariate random variable associated with the profile of
agent i ∈ Nj , and Yj =

∑
i∈Nj Xi the random variable associated to the aggregated

profile of the community j. We want the entropy of the aggregated profile H(Yj) to be
large, so that the community j is flexible. Given that the entropy of a sum of multivariate
random variables evaluates the entropy of sums8 (known to be submodular and monotone
[30]), we can use Algorithm 1.

We consider a particular case for the entropy as a flexibility measure. We assume
the random variables Xi, i = 1, . . . , N are independent multivariate normals (MVN).
Thus Yj , is also a MVN. If we call KYj the covariance matrix of Yj , then the entropy of
Yj can be written as H(Yj) ∝ log |KYj |, where an irrelevant additive factor depending
on the dimension T has not been considered. We define the set function measuring the
flexibility as:

WH(S) = log

∣∣∣∣∣
∑

i∈S
Ki

∣∣∣∣∣ , (8)

with Ki the covariance matrix of agent i. There are various ways to obtain the covariance
matrices {Ki}i: i) every agent i could estimate its matrix Ki and send it to the coordina-
tor, or ii) the profiles {xki }k, obtained by a coordinator during past negotiations can be

used as samples to approximate the covariance matrix: Ki = 1
K−1

∑K
k=1(xki − m̄i)(x

k
i −

m̄i)
T , with m̄i = 1

K

∑K
k=1 x

k
i (this is used later in the example scenarios). To avoid

numerical issues when calculating the log determinant, we use the sum of the non-zero
singular values (SVD) of the covariance matrix.

3. Example Scenarios

We illustrate the proposed coordination for inter-community imbalance minimiza-
tion in three scenarios: i) coordination under community constraints, ii) coordination
for demand response as a service, and iii) coordination under unexpected events. These
scenarios were selected to illustrate what can be achieved by the coordination, and to an-
alyze the algorithm and its robustness. We consider the problem of coordinated Electric
Vehicles (EVs) charging, where the charging is controlled by an EMS (the coordinating
agent) at the households9. The coordination should help avoiding producing large con-
sumption peaks due many EVs being charged at a similar time (e.g. during the evening
after the EVs are plugged).

To focus on the coordination, we only considerer EVs, assume their charging cannot
be interrupted, and neglect the power usage of other devices – although any controllable
appliance could be considered in the coordination: e.g. A/C (level adjustment), laundry
(usage timing), and batteries.

7An agent that can generate many profiles with equal probability is flexible (high entropy). If it has
only one profile, it is not flexible (low entropy).

8Note that this is not the same as the entropy of a joint probability distribution, which is more
common and also submodular [29].

9In the following we use EV and EMS as interchangeable terms.
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General setup. The power usage is coordinated over a day using profiles of dimension T =
144 (10-minute time slots). We assume the EVs must be charged (3kWh) continuously,
and the charging requires 1000[W ]. Thus charging one EV takes about 18 time-slots (3
hrs). Each EV has its preferred starting time and allows some variability around it. We
consider a day-ahead coordination, followed by an intra-day coordination required due to
changes in objective functions (that represent unforeseeable changes in user preference
or weather conditions). Unless stated, we use ρg = ρj = 0.1× 10−6 ∀j.

Agent model. We use the probabilistic model proposed in [9] and briefly described in
Section 2.1. Each EV is represented by three modes (M = 3): Q = {q1, q2, q3} indicating
the period before, during, and after charging respectively, and each mode is defined
by its output and duration probability distributions. We assume the 1000[W ] required
charging happens during mode q2, and this is modeled using an output distribution
given by P (xi,t|st) = 1[xi,t=X (st)], with 1[◦] the indicator function, xi,t the profile xi at

time t, and X (st) = 0, 1000, 0[W ] for st = q1, q2, q3 respectively. Thus f
x|u
i (xi, ui) =

−
∑T
t=1 log 1[xi,t=X (st)], with ui , s1:T ∈ {q1, q2, q3}T , and xi uniquely determined by

ui. We assume the duration of mode m for EV i follows a Gaussian distribution10

N (µi,m, σ
2
i,m).

For the coordination in Scenarios 1 and 2, we consider two types of users:
A) µi,1 uniformly distributed in [30, 35]; σi,1 = 9, and B) µi,1 uniformly distributed in
[100, 105]; σi,1 = 3.
The parameters of the other two modes are given by: µi,2 = 18 (3 hrs); σi,2 = 1, and
µi,3 = T − (µi,1 + µi,2); σi,3 = 10, for both types of users. Thus, agents of type A are
more flexible in their start charging time (larger sigma), than the type B ones. Agents
of type A prefer to charge the EVs in the early morning, while agents of type B prefer to
charge in the evening.

Day-ahead coordination. In the three scenarios, a day-ahead coordination is performed,
where the agents, together with the global coordinator, perform a coordination and de-
termine their planned aggregated power profile. More precisely, the coordinator seeks
to balance the aggregated power profile using a global cost of the form g0(

∑
i∈N xi) =

α||
∑
i∈N xi − r0||2, with α = 0.1 × 10−6/N , and using the algorithm in Eq. (6). The

profile r0 ∈ RT is a predefined power usage target depending on the scenario. The ob-
tained day-ahead aggregated profile rj =

∑
i∈Nj r(i), with r(i) the day-ahead coordinated

profile of agent i, can be used as a reference during a intra-day coordination.

Intra-day coordination. We use the distributed architecture (as in Fig. 1) with J = 4
communities, and the agents are assigned to communities using the proposed assignment
framework. An intra-day coordination can take place due to: (i) agents not following their
scheduled power usage, or (ii) agents (or coordinators) having changed their objective
functions. The used global and community objectives are specific to each scenario.

From the formulation and implementation point of view, we briefly mention two key
issues. The objective functions may change over time [23], thus we replace fi(xi) by f ti (xi)
and g(

∑
i xi) by gt(

∑
i xi), with the index t representing the current time. Second, when

10The PDF can be learned from sensed data, but we have set it manually.
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solving Eq. (2) not all components of the variable xi are optimization variables: if we
write xi = (xi,1, . . . , xi,t−1, xi,t, . . . , xi,T ), the components (xi,1, . . . , xi,t−1) are observa-
tions (have fix values), while (xi,t, . . . , xi,T ) are optimization variables. This changes the
way the generative model is solved [25].

3.1. Scenario 1: Imbalance minimization with community constraints

This scenario illustrates the coordination under community constraints and shows
the influence of the parameters ρg and ρj in the convergence of the algorithm. Here
N = 400 electric vehicles (EVs) coordinate their power usage seeking to match the local
PV generation. A day-ahead PV forecast indicates a generation that provides, through
the day, about 2/3 the energy required to charge the EVs. The EVs coordinate to balance
the remaining required power (r0 is the PV forecast).

Fig. 2 shows the evolution of the coordinated profile for the given day-ahead PV
forecast (sunny, shown in green). The obtained coordinated profile (after 150 iterations)
is shown in red. Recall that some EVs prefer to charge in the morning, while others prefer
the evening, but most PV generation occurs during the afternoon, thus the EVs must
modify their charging time. The dashed (cyan) curve shows the profile obtained without
coordination. Fig. 2 (bottom) indicates a fast convergence of the global coordinator’s
cost.

Now we assume the coordinators receive an updated PV generation forecast in the
early morning (at t = 30), indicating a cloudy period during the time range [57, 72].
Thus, the 4 communities coordinate to match the updated PV forecast. Fig. 3(a) shows
the evolution of the coordinated profile. Note that just 40 iterations are needed for the
upper level of the hierarchy, as the intra-day coordination uses day-ahead profiles as
initial conditions.

Day-ahead coordination
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Figure 2: Scenario 1. Power balancing with PV generation forecast. Subfigures. Top: Coordinated profile
evolution (dashed cyan: first iteration; light-blue/dark-blue earlier/later iterations) and PV forecast
(green). Bottom: Global objective evolution.

We consider the case where each community (e.g. a multi-dwelling) has the constraint
that all local PV generation of a community should be used inside the community (in some
countries –e.g. Spain– there have been high penalties for local generation sold back to the
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(b) With community constraints

Figure 3: Scenario 1. (Intra-day). Aggregated power profile. Scenario: An updated PV forecast indicates
a reduction in generation in the time range [57, 72]. In the case of community constraints (b), each of
the communities must consume more than the local PV.

grid). Formally, the objective of community j at time t is gtj(x) = −
∑T
τ=t log 1[x(τ)≥vj,t(τ)

],

with vj,t(τ) ∈ RT the PV generation forecast of time-slot τ (at time t), and x(τ) the τ th

component of x ∈ RT ; i.e., the consumption of community j should be larger than its
generation at all times. Fig. 3 shows the obtained coordinated profile, and Fig. 4 the
obtained communities’ coordinated profiles, with and without community constraints for
different values of ρ = ρg = ρj . For the case without constraints (in Fig. 4(a)) we can
observe that for some time periods the coordinated profiles has larger generation than
consumption (see for example the time range [90, 110] for community 1 (top-left plot)),
while in the case with community constraints (Fig. 4(b)) all four communities fulfilled
the constraint at all times. We can also observe that the convergence of the global cost
does not depend too much on value of ρ and it is faster in the case with community
constraints. From the coordinated profiles (Fig. 4(b)) we can see that smaller values of
ρj are preferable.

3.2. Scenario 2: Imbalance minimization for demand response as a service

This scenario illustrates how the EVs can coordinate to balance their power usage
and provide a DR service, and we also compare this to the use of price-based demand
response. The global coordinator seeks to flatten the power usage, but it may receive
a signal indicating a critical-peak-pricing (CPP) event, thus an updated coordination is
needed. In this scenario we also briefly study two features of the coordination: (a) its
robustness under communication problems, and (b) the use of constraints in the number
of iterations for the intra-community coordination.
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Figure 4: Scenario 1 (Intra-day). Coordinated profiles (top) and global objective convergence (bottom)
with and without constraints. Different values of ρ = ρg = ρj are used. Note that the PV generation
differs among the communities. In (b), the constraint (demand larger than supply for each community)
is fulfilled at all times.
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In the day-ahead coordination, the N = 400 agents balance their power usage, ob-
taining the coordinated profile shown in Fig. 5 (black). Note that the power is less than
0.5× 105[W ] in the time range [0, 85], slightly larger for [86, 139], while no power is used
in the time range [140, 144]. As in Scenario 1, this is due to the distinct flexibility of the
two agents’ types.

Now we assume that at time tcpp there is a signal indicating a CPP event for the
time range [40, 50]. This price signal, received by the global coordinator, is intended
to cause a reduction in the power usage during that period and requires an intra-day
coordination. To integrate this CPP signal, the global coordinator’s objective at time τ
is: g(τ)(x) = α||x||2Wτ (β)

, with Wτ (β) ∈ RT×T and α = 0.1×10−6/N . Normally Wτ (β) is

the identity matrix (the goal is to flatten the power usage), but it can be used to indicate
a time-varying price. We use11:

Wτ (β) =

{
I if τ < tcpp
diag(bcpp) otherwise,

(9)

with bcpp = (1, . . . , 1︸ ︷︷ ︸
T1

, β, . . . , β︸ ︷︷ ︸
T2

, 1, . . . , 1︸ ︷︷ ︸
T3

),

where tcpp = 30 (the time when the CPP event is informed), with T = T1 + T2 + T3,
T1 = 39 (the duration before the CPP event), T2 = 11 (the duration of the CPP event),
and T3 = 94. Here we use a value of β = 10, representing a 10-fold increase in the
quadratic penalty cost for the range [T1 + 1, T1 + T2].

Fig. 5 (red) shows the intra-day coordination results under this CPP signal. The
obtained profile (red) reduces the power usage to more than half compared to the day-
head one for the time range [40, 50], without producing any peak rebound. Recall that
the agents are not interruptible, thus the EVs that started charging before τ = 30 might
have not finished charging, causing the low (but not zero) consumption in the first part
of the period [40, 50].

Fig. 6 presents the results obtained by a price-based demand response program.
This is formulated as each agent solving independently (no coordination) the problem

arg minx f
(τ)
i (x) + α||x||2Wτ (β)

, with α and Wτ as defined above. Here we considered
different values of β ∈ 1, 2, . . . 6. We can observe that the obtained aggregated profile
produce a large peak rebound for large values of β, while small values of β produce high
consumption peak during the CPP period. On the contrary, by coordinating (Fig. 5),
a more balanced power usage pattern is obtained, with a low power usage during the
critical peak pricing period and without causing peak rebounds.

Also, when one community cannot communicate with the global coordinator (is shown
in Fig. 5, blue)) the remaining communities and the global coordinator still coordinate,
achieving a profile very similar to the one obtained with full communication (Fig. 5,
red), and far from the ones obtained by demand response (Fig. 6).

Inexact solutions of the proximal operator. ADMM is known to converge even if the x-
and z- steps are inexact (under some suboptimality measures [21] [24]), which allows
solving the x-step approximately for a community. We analyze two uses of this ability.

11We are assuming a quadratic cost of the power usage. This simplification follows from the fact that
part of fuel cost of a thermal generation unit can be approximated as a quadratic function of the electric
power output [31].
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Figure 5: Scenario 2: Coordinated DR as a service. After the day-ahead coordination (black), there is
a CPP event for the period [40, 50] (yellow). Intra-day coordinated profiles under full communication
(red) and communication failures (blue) are similar.
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Figure 6: Scenario 2 (intra-day). Aggregated profile for a price-based demand response program (no
coordination). β indicates a critical pick price in [40, 50].

• Number of iterations: Given that the coordination within a community is nested
in the coordination at the upper levels of the hierarchy, we may want to restrict
the time used in the intra-community coordination (e.g. to reduce the processing
power in the agents or the required communication bandwidth). We do this by
limiting the number of iterations in the community’s coordination. Fig. 7 shows the
obtained results when we limit k, the number of iterations within each community.
We can see that using 10 or more iterations gives good results, with 20 and 25
iterations giving very similar profiles (Fig. 7(a)) and convergence speeds (Fig.
7(b)). However, using k equal to 1 might require a large number of iterations at
the global level, which should be avoided.

• Data package losses: The coordination is capable of handling data package losses
by approximating lost packages (by using the last available solution to the coor-
dinator). Fig. 8 shows the result of approximating the solution of the x-step for
a percentage (in {0, 20, 40, 60, 80}) of lost packages. It can be observed that the
larger the number of iterations, the smaller the deviation from the optimal solu-
tion (Fig. 8, bottom) and the smaller the norm of the power profile (Fig. 8, top).
Moreover, in terms of deviation from the optimal solution (see Fig. 8, bottom),
for each number of iterations larger of equal than 10, the obtained results are very
similar for all loss rates. Thus, data package losses have a negative effect only for
small number of iterations (k less than 10).

19



0 15 30 45 60 75 90 105 120 135
0

5

10

15
x 10

4

Time t (10min x 144)

P
o
w

e
r

[W
]

k=1 iteration

k=5 iterations

k=10 iterations

k=15 iterations

k=20 iterations

k=25 iterations

CPP event in [40,50]

(a) Aggregated coordinated profiles

5 10 15 20 25 30 35 40
0

500

1000

1500

2000

I te rat ion q

g
(
∑

i
x
i)

 

 
k= 1 iteration

k= 5 iterations

k=10 iterations

k=15 iterations

k=20 iterations

k=25 iterations

(b) Global objective evolution

Figure 7: Scenario 2 (Intra-day). Number of iterations, k, for the groups. (a) Aggregated coordinated
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3.3. Scenario 3: Imbalance minimization robustness under unexpected events

Having a robust coordination is very important, in particular in case of emergencies
and unexpected events. In the current scenario we perform a more exhaustive analysis of
the coordination robustness, taking into account two factors: the number of communities
that cannot communicate, and the percentage of agents that do not follow their planned
power usage.

Communication link failures. We consider two types of users, with a percentage of them
changing their behavior during the day. We use the same model as in the previous
scenarios, but with different parameters. We let all EVs set a preferred starting time
µi,1 uniformly distributed in [50, 70], and σi,1 take values in {3, 9} (evenly distributed)
among the users, i.e. about half the users is more flexible in their start charging time
than the other half. The remaining modes’ duration probabilities are defined as in the
previous scenarios (µi,2 = 18 (3 hrs); σi,2 = 1, and µi,3 = T − (µi,1 + µi,2); σi,3 = 10).

The agents are assigned to J = 4 communities, seeking to maximize the flexibility of
each community, using Algorithm 1 (WSAgentAssignment) with 104 samples. The
covariance matrices of the agents, Ki, are estimated by the global coordinator using the
profiles observed during the day-ahead coordination {xki }Kk=1 ∀i.

We consider that some agents deviate from their planned charging time, while also
contributing less to the coordination. This information is available at time τ = 10, and
is modeled as the agents in N̂ ⊆ N changing their preferred starting time and reducing
their starting time flexibility. In order to analyze the robustness of the coordination,
we modify the proportion of agents that change their behavior: p = |N̂ |/|N | with p ∈
{0, 0.2, 0.4, 0.6, 0.8}. At time τ , the agents in N̂ update their parameters as follows:
σi,1 ← 1 and µi,1 ← µi,1 + δi, with δi following a uniform distribution in [−10, 10].
In other words, besides the change in preferred starting time, the flexibility diminishes
considerably (σi,1 goes from 3 or 9 to 1). Other parameters do not change (except
µi,3 = T − (µi,1 + µi,2)).

The global objectives in the day-ahead and intra-day coordination are different. While
in the former case the goal is to balance the aggregated power profile, in the later case
(at each time τ) the goal is to minimize its deviation from a reference r. Here we
consider this reference to be aggregated power usage r =

∑
i ri obtained in the day-

ahead coordination. Thus, the global cost at time t is gt(
∑
i∈N xi) = α||

∑
i∈N xi− r||2,

with α = 10−6/N . In the cases where one or more communities cannot communicate
with the global coordinator, the fall back procedure described in Section 2.2.3 is used.

Fig. 9 summarizes the results for different values of p and for different numbers
of communities not being able to communicate with the global coordinator. It can
be observed that when 20% or 40% of the agents change their planned pattern usage,
the coordination obtains a profile similar to day-ahead plan, even when there is only
communication within the communities. Moreover, when 80% (p=0.8) of the agents
change their behavior and become inflexible, and there is only coordination within the
communities (Fig. 9, red curve), the aggregated profile is far from the no-coordination
case. These results show the robustness of the proposed coordination: the coordination
still achieves an aggregated profile that is not too far from the planned one, even if many
agents change their planned behavior and some communities cannot communicate.
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Figure 9: Deviation from the reference when a set of groups cannot communicate with the global
coordinator and when p × 100% of the agents do not follow the plan. The no coordination case (blue
dotted line) is shown for comparison.

Recurrent deviation from plan. The proposed framework does not explicitly model the
stochastic nature of power consumption or supply, and in its basic form is designed to
work with controllable devices. It assumes the agents do their best effort to follow the
day-ahead planned profiles, but in real-world scenarios this may not always apply. To
handle unexpected events of stochastic nature, the intra-day coordination is used. In the
current scenario we analyze the case several agents change their cost function different
times of the day.

Similarly to previous experiments, we let all EVs set a preferred starting time µi,1
uniformly distributed in [50, 55], and σi,1 evenly distributed in {3, 9}. The remaining
modes’ duration are defined as in the previous scenarios (µi,2 = 18; σi,2 = 1, and
µi,3 = T − (µi,1 + µi,2); σi,3 = 10). These are the parameters used in the day-ahead
coordination (by all agents), and the parameters used in the intra-day coordination by
all agents that do not change their cost function.

We consider that a percentage p of the agents (with p ∈ {80, 60, 40}) change their
cost function. Each of these agents change its parameters at time τi as follows: σi,1 ←
1 and µi,1 ← µi,1 + δi, with δi uniformly distributed in [0, 10] (there is a change in
preferred starting time and the flexibility highly decreases). Other parameters do not
change (except µi,3 = T − (µi,1 + µi,2)). The value of τi follows a Gaussian distribution
N (µi,1−∆i, 5), with ∆i ∈ {0, 10, 20, 30}. A negative value of τi indicates that the agent
changes its plan before the day-ahead coordination, a positive one indicates the time at
which the agent will update its cost function, while when τi is larger than µi, the agent
just start using power usage the new cost function is never used in the coordination).

Fig. 10 presents the obtained results (average over 10 runs with N = 256 agents).
In the top row we can observe how the power is balanced by the community, with and
without the intra-day coordination, in terms of the l2-norm of the aggregated power
||
∑
i x̆i||2/||

∑
i xi||2 (relative to x̆i, the profile without coordination). In the bottom

row we can observe results in terms of the deviation from the day-ahead plan: ||
∑
i xi−

x∗i ||2/||
∑
i x
∗
i ||2 (with x∗i the day-ahead plan). In both figures, smaller values are better.

Note that the intra-day coordination helps in balancing the power usage and in achieving
profiles closer to the planned one, even if large number of agents do not follow the plan
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and this information is only know short time before the power used.
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Figure 10: Normalized power balance and deviation from day-ahead plan when a percentage p ∈
{80, 60, 40} of the agents do not follow the plan and change their cost function during the day at
different times. Results are the average over 10 runs. See text for details.

4. Conclusions

We have proposed a coordinated energy management framework for inter-community
imbalance minimization. The end-users in each community coordinate and plan the
aggregated power usage pattern, allowing to balance the aggregated energy usage. The
coordination is done via (global and community) coordinators in a hierarchical distributed
architecture, that can take into account global, community and end-users’ objectives
and constraints. Seeking to have a robust system that can better respond to unplanned
changes and communication problems, we have also proposed a framework for assigning
the agents to communities by taking into account a measure of the flexibility of each
agent. The proposed framework was evaluated in three simulated example scenarios,
where we demonstrate that the proposed framework can be used to coordinate groups
of agents and minimize inter-community imbalance, while taking into account the agent
and the groups objectives. In addition, it was observed that the framework i) is robust
under communication problems (failure in communication links and data package losses),
ii) has relatively low communication requirements, iii) can handle the case when agents
do not follow their specified plan, and iv) is not strongly dependent on the algorithm’s
parameters (number of iterations and penalty parameter ρ). Also of importance is that
the coordination is more effective that traditional price-based method (e.g. critical peak
pricing), and that the communities can coordinate to provide demand respond as a
service. Possible future directions include: the design of an incentive model for the
end-users, to explicitly consider the stochastic nature of generation and consumption,
to manage distributed uncontrollable generation (e.g. photo-voltaics) and distributed
storage, and to extend the coordination framework to manage the community’s power
usage in real-time.
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